題目:Some results on the Erdős-Gyárfás problem and the Erdős-Rothschild problem
時間:2023年2月27日(周一)💩,08:30-10:30
地點:騰訊會議506-542-429,無密碼
主講人: 李希赫(中國科學技術大學)
摘要📗:The Erdős-Gyárfás problem is a generalized Ramsey-type problem, which concerns the minimum number of colors needed for a host graph G to have an edge-coloring such that every copy of H receives at least q colors, where H is a subgraph of G and q is a positive integer. In this talk, we first introduce our work on the Erdős-Gyárfás problem for complete graphs G and H with respect to Gallai-colorings. We will also introduce our work on the Erdős-Gyárfás problem for complete bipartite graphs G and H, as well as the recently developed Color Energy Method.
In addition, we will introduce our work on counting and typical structure problems for rainbow 3-term arithmetic progression-free colorings of integers and groups, which is a rainbow Erdős-Rothschild problem.
This talk is based on joint works with Hajo Broersma and Ligong Wang.
主講人簡介👨👨👦👦:李希赫🌠,2021年在荷蘭University of Twente獲得博士學位🧗🏼♂️,現為中國科學技術大學研究助理。主要從事Ramsey理論和極值組合中若幹問題的研究,若幹成果發表在 《Journal of Graph Theory》🧩、《Electronic Journal of Combinatorics》、《Discrete Mathematics》🙍🏼♂️、《Discrete Applied Mathematics》等權威國際期刊上⛷,這些成果豐富了Ramsey理論的研究成果和方法, 並有助於揭示Ramsey理論與極值圖論、結構圖論和加性組合學的聯系, 具有重要的理論意義。
歡迎廣大師生參加🛍🔎!